• Twitter
  • Twitter
  • Twitter
  • Twitter

Reference List

High Intensity Interval Training

Akerman, A.P., Lucas, S.J., Baldi, C.J., Katare, R., Cotter, J.D., 2015. Haematological adaptations to High Intensity Interval Training (HIIT) in temperate and hot environments. Extreme Physiology & Medicine 4, A145. doi:10.1186/2046-7648-4-S1-A145

Avazpor, S., Kalkhoran, J.F., Amini, H.A., 2016. Effect of 8 Weeks of High Intensity Interval Training on Plasma Levels of Adiponectin and Leptin in Overweight Nurses. Novelty in Biomedicine 4, 87–92.

Beetham, K.S., 2015. Exercise and lifestyle intervention and high intensity interval training in patients with chronic kidney disease.

Billat, V.L., Slawinksi, J., Bocquet, V., Chassaing, P., Demarle, A., Koralsztein, J.P., 2001. Very short (15s-15s) interval-training around the critical velocity allows middle-aged runners to maintain VO2 max for 14 minutes. Int J Sports Med 22, 201–208. doi:10.1055/s-2001-16389

Burgomaster, K.A., Cermak, N.M., Phillips, S.M., Benton, C.R., Bonen, A., Gibala, M.J., 2007. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. AJP: Regulatory, Integrative and Comparative Physiology 292, R1970–R1976. doi:10.1152/ajpregu.00503.2006

Burgomaster, K.A., Howarth, K.R., Phillips, S.M., Rakobowchuk, M., Macdonald, M.J., McGee, S.L., Gibala, M.J., 2008. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. (Lond.) 586, 151–160. doi:10.1113/jphysiol.2007.142109

Cardozo, G.G., Oliveira, R.B., Farinatti, P.T.V., 2015. Effects of High Intensity Interval versus Moderate Continuous Training on Markers of Ventilatory and Cardiac Efficiency in Coronary Heart Disease Patients. The Scientific World Journal 2015, 1–8. doi:10.1155/2015/192479

Daussin, F.N., Zoll, J., Dufour, S.P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., Mettauer, B., Piquard, F., Geny, B., Richard, R., 2008. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R264–272. doi:10.1152/ajpregu.00875.2007

Denadai, B.S., Ortiz, M.J., Greco, C.C., de Mello, M.T., 2006. Interval training at 95% and 100% of the velocity at VO2 max: effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab 31, 737–743. doi:10.1139/h06-080

Esfarjani, F., Laursen, P.B., 2007. Manipulating high-intensity interval training: effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport 10, 27–35. doi:10.1016/j.jsams.2006.05.014

Gibala, M.J., Jones, A.M., 2013. Physiological and performance adaptations to high-intensity interval training.

Gibala, M.J., Little, J.P., MacDonald, M.J., Hawley, J.A., 2012. Physiological adaptations to low-volume, high-intensity interval training in health and disease: Adaptations to low-volume, high-intensity interval training. The Journal of Physiology 590, 1077–1084. doi:10.1113/jphysiol.2011.224725

Gibala, M.J., Little, J.P., van Essen, M., Wilkin, G.P., Burgomaster, K.A., Safdar, A., Raha, S., Tarnopolsky, M.A., 2006. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. (Lond.) 575, 901–911. doi:10.1113/jphysiol.2006.112094

Gibala, M.J., McGee, S.L., 2008. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exercise and sport sciences reviews 36, 58–63.

Gross, M., Swensen, T., King, D., 2007. Nonconsecutive- versus Consecutive-Day High-Intensity Interval Training in Cyclists: Medicine & Science in Sports & Exercise 39, 1666–1671. doi:10.1249/mss.0b013e3180cac209

Hafstad, A.D., Boardman, N.T., Lund, J., Hagve, M., Khalid, A.M., Wisloff, U., Larsen, T.S., Aasum, E., 2011a. High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. Journal of Applied Physiology 111, 1235–1241. doi:10.1152/japplphysiol.00594.2011

Hafstad, A.D., Boardman, N.T., Lund, J., Hagve, M., Khalid, A.M., Wisloff, U., Larsen, T.S., Aasum, E., 2011b. High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. Journal of Applied Physiology 111, 1235–1241. doi:10.1152/japplphysiol.00594.2011

High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis — Weston et al. 48 (16): 1227 — British Journal of Sports Medicine [WWW Document], n.d. URL http://bjsm.bmj.com/content/48/16/1227.short (accessed 9.23.15a).

High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis — Weston et al. 48 (16): 1227 — British Journal of Sports Medicine [WWW Document], n.d. URL http://bjsm.bmj.com/content/48/16/1227.short (accessed 9.23.15b).

Holmes, D., 2015. Cardiovascular endocrinology: High-intensity interval training benefits patients with T2DM. Nat Rev Endocrinol 11, 632–632. doi:10.1038/nrendo.2015.171

Hoshino, D., Kitaoka, Y., Hatta, H., 2016. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. The Journal of Physical Fitness and Sports Medicine 5, 13–23. doi:10.7600/jpfsm.5.13

Jacobs, R.A., Flück, D., Bonne, T.C., Bürgi, S., Christensen, P.M., Toigo, M., Lundby, C., 2013. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J. Appl. Physiol. doi:10.1152/japplphysiol.00445.2013

Kaspar, F., Jelinek, H.F., Perkins, S., Al-Aubaidy, H.A., deJong, B., Butkowski, E., 2016. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study. Mediators of Inflammation 2016, 1–6. doi:10.1155/2016/5474837

Kordi, M.R., Choopani, S., Hemmatinafar, M., Choopani, Z., 2013. The effects of six weeks high intensity interval training (HIIT) on resting plasma levels of adiponectin and fat loss in sedentary young women. Journal of Jahrom University of Medical Sciences 11, 23–31.

Laursen, P.B., Shing, C.M., Peake, J.M., Coombes, J.S., Jenkins, D.G., 2002. Interval training program optimization in highly trained endurance cyclists. Medicine & Science in Sports & Exercise 1801–7.

Little, J.P., Safdar, A., Wilkin, G.P., Tarnopolsky, M.A., Gibala, M.J., 2010. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J. Physiol. (Lond.) 588, 1011–1022. doi:10.1113/jphysiol.2009.181743

Malatesta, D., Werlen, C., Bulfaro, S., ChenevièRe, X., Borrani, F., 2009. Effect of High-Intensity Interval Exercise on Lipid Oxidation during Postexercise Recovery: Medicine & Science in Sports & Exercise 41, 364–374. doi:10.1249/MSS.0b013e3181857edo

Miramonti, A.A., Stout, J.R., Fukuda, D.H., Robinson, E.H., Wang, R., La Monica, M.B., Hoffman, J.R., 2015. The effects of four weeks of high intensity interval training and β-hydroxy-β-methylbutyric free acid supplementation on the onset of neuromuscular fatigue: Journal of Strength and Conditioning Research 1. doi:10.1519/JSC.0000000000001140

Paton, C.D., Hopkins, W.G., 2004. Effects of high-intensity training on performance and physiology of endurance athletes. Sportscience 8, 25–41.

Percival, M.E., 2014. TITLE: Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle. McMaster University.

Roos, L., Taube, W., Zuest, P., Clénin, G., Wyss, T., 2015. Musculoskeletal Injuries and Training Patterns in Junior Elite Orienteering Athletes. BioMed Research International 2015, 1–8. doi:10.1155/2015/259531

Seiler, S., Jøranson, K., Olesen, B.V., Hetlelid, K.J., 2013. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration: Effort-matched interval training. Scandinavian Journal of Medicine & Science in Sports 23, 74–83. doi:10.1111/j.1600-0838.2011.01351.x

Seiler, S., Tønnessen, E., 2009. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience 13, 32–53.

ShahinRiyahi-Malayeri, H., AliGaeini, A., 2014. Serum Chemerin Levels and Insulin Resistance Response to High-Intensity Interval Training in Overweight Men.

Sheykhlouvand, M., Khalili, E., Agha-Alinejad, H., Gharaat, M., 2015. Hormonal and Physiological Adaptations to High-Intensity Interval Training in Professional Male Canoe Polo athletes. J Strength Cond Res. doi:10.1519/JSC.0000000000001161

Sloth, M., Sloth, D., Overgaard, K., Dalgas, U., 2013. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand J Med Sci Sports. doi:10.1111/sms.12092

Sports Medicine Specialist, Dept of Sports Medicine and Physiotherapy, Upadhyay, D.V., 2016. A Comparative Study of Effect of High Intensity Interval Training and Slow Continuous Training on the Aerobic performance in Adult Healthy Untrained Male Volunteers. Journal of Medical Science And clinical Research. doi:10.18535/jmscr/v4i1.01

Stöggl, T., Sperlich, B., 2014. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in Physiology 5. doi:10.3389/fphys.2014.00033

Taha, M.M., Abdeen, H.A., Abdelsamaia, R.A., 2016. High Intensity Interval Versus Continuous Moderate Aerobic Training as a Prophylaxsis of Diabetic Nephropathy. International Journal of Diabetes Research 5, 14–19.

Talanian, J.L., Galloway, S.D.R., Heigenhauser, G.J.F., Bonen, A., Spriet, L.L., 2006. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology 102, 1439–1447. doi:10.1152/japplphysiol.01098.2006

Wisløff, U., Støylen, A., Loennechen, J.P., Bruvold, M., Rognmo, Ø., Haram, P.M., Tjønna, A.E., Helgerud, J., Slørdahl, S.A., Lee, S.J., Videm, V., Bye, A., Smith, G.L., Najjar, S.M., Ellingsen, Ø., Skjaerpe, T., 2007. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115, 3086–3094. doi:10.1161/CIRCULATIONAHA.106.675041